Saturday, July 26, 2008

Wireless Security

Wireless security is the prevention of unauthorized access or damage to computers using wireless networks.

Wireless networks are very common, both for organizations and individuals. Many laptop computers have wireless cards pre-installed. The ability to enter a network while mobile has great benefits. However, wireless networking has many security issues.[1] Hackers have found wireless networks relatively easy to break into, and even use wireless technology to crack into wired networks.

The risks to users of wireless technology have increased as the service has become more popular. There were relatively few dangers when wireless technology was first introduced. Crackers had not yet had time to latch on to the new technology and wireless was not commonly found in the work place. However, there are a great number of security risks associated with the current wireless protocols and encryption methods, and in the carelessness and ignorance that exists at the user and corporate IT level.[2] Cracking methods have become much more sophisticated and innovative with wireless. Cracking has also become much easier and more accessible with easy-to-use Windows-based and Linux-based tools being made available on the web at no charge.

Some organizations that have no wireless access points installed do not feel that they need to address wireless security concerns. In-Stat MDR and META Group have estimated that 95% of all corporate laptop computers that were planned to be purchased in 2005 were equipped with wireless. Issues can arise in a supposedly non-wireless organization when a wireless laptop is plugged into the corporate network. A cracker could sit out in the parking lot and break in through the wireless card on a laptop and gain access to the wired network.


Types of unauthorized access

Accidental association

Unauthorized access to company wireless and wired networks can come from a number of different methods and intents. One of these methods is referred to as “accidental association”. When a user turns on a computer and it latches on to a wireless access point from a neighboring company’s overlapping network, the user may not even know that this has occurred. However, it is a security breach in that proprietary company information is exposed and now there could exist a link from one company to the other. This is especially true if the laptop is also hooked to a wired network.

Malicious association

“Malicious associations” are when wireless devices can be actively made by crackers to connect to a company network through their cracking laptop instead of a company access point (AP). These types of laptops are known as “soft APs” and are created when a cracker runs some software that makes his/her wireless network card look like a legitimate access point. Once the cracker has gained access, he/she can steal passwords, launch attacks on the wired network, or plant trojans. Since wireless networks operate at the Layer 2 level, Layer 3 protections such as network authentication and virtual private networks (VPNs) offer no barrier. Wireless 802.1x authentications do help with protection but are still vulnerable to cracking. The idea behind this type of attack may not be to break into a VPN or other security measures. Most likely the cracker is just trying to take over the client at the Layer 2 level.

Ad-hoc networks

Ad-hoc networks can pose a security threat. Ad-hoc networks are defined as peer-to-peer networks between wireless computers that do not have an access point in between them. While these types of networks usually have little protection, encryption methods can be used to provide security.

Non-traditional networks

Non-traditional networks such as personal network Bluetooth devices are not safe from cracking and should be regarded as a security risk. Even barcode readers, handheld PDAs, and wireless printers and copiers should be secured. These non-traditional networks can be easily overlooked by IT personnel who have narrowly focused on laptops and access points.

Identity theft (MAC spoofing)

Identity theft (or MAC spoofing) occurs when a cracker is able to listen in on network traffic and identify the MAC address of a computer with network privileges. Most wireless systems allow some kind of MAC filtering to only allow authorized computers with specific MAC IDs to gain access and utilize the network. However, a number of programs exist that have network “sniffing” capabilities. Combine these programs with other software that allow a computer to pretend it has any MAC address that the cracker desires,[3] and the cracker can easily get around that hurdle.

Man-in-the-middle attacks

A man-in-the-middle attacker entices computers to log into a computer which is set up as a soft AP (Access Point). Once this is done, the hacker connects to a real access point through another wireless card offering a steady flow of traffic through the transparent hacking computer to the real network. The hacker can then sniff the traffic. One type of man-in-the-middle attack relies on security faults in challenge and handshake protocols to execute a “de-authentication attack”. This attack forces AP-connected computers to drop their connections and reconnect with the cracker’s soft AP. Man-in-the-middle attacks are enhanced by software such as LANjack and AirJack, which automate multiple steps of the process. What once required some skill can now be done by script kiddies. Hotspots are particularly vulnerable to any attack since there is little to no security on these networks.

Denial of service

A Denial-of-Service attack (DoS) occurs when an attacker continually bombards a targeted AP (Access Point) or network with bogus requests, premature successful connection messages, failure messages, and/or other commands. These cause legitimate users to not be able to get on the network and may even cause the network to crash. These attacks rely on the abuse of protocols such as the Extensible Authentication Protocol (EAP).

Network injection

In a network injection attack, a cracker can make use of access points that are exposed to non-filtered network traffic, specifically broadcasting network traffic such as “Spanning Tree” (802.1D), OSPF, RIP, and HSRP. The cracker injects bogus networking re-configuration commands that affect routers, switches, and intelligent hubs. A whole network can be brought down in this manner and require rebooting or even reprogramming of all intelligent networking devices.

Caffe Latte attack

The Caffe Latte attack is another way to defeat WEP. It is not necessary for the attacker to be in the area of the network using this exploit. By using a process that targets the Windows wireless stack, it is possible to obtain the WEP key from a remote client.[4] By sending a flood of encrypted ARP requests, the assailant takes advantage of the shared key authentication and the message modification flaws in 802.11 WEP. The attacker uses the ARP responses to obtain the WEP key in less than 6 minutes.[5]

Counteracting risks

Risks from crackers are sure to remain with us for any foreseeable future. The challenge for IT personnel will be to keep one step ahead of crackers. Members of the IT field need to keep learning about the types of attacks and what counter measures are available.

Counteracting security risks

There are many technologies available to counteract wireless network intrusion, but currently no method is absolutely secure. The best strategy may be to combine a number of security measures.

Possible steps towards securing a wireless network include:

  1. All wireless LAN devices need to be secured
  2. All users of the wireless network need to be educated in wireless network security
  3. All wireless networks need to be actively monitored for weaknesses and breaches

MAC ID filtering

Most wireless access points contain some type of MAC ID filtering that allows the administrator to only permit access to computers that have wireless functionalities that contain certain MAC IDs. This can be helpful; however, it must be remembered that MAC IDs over a network can be faked. Cracking utilities such as SMAC are widely available, and some computer hardware also gives the option in the BIOS to select any desired MAC ID for its built in network capability.

Static IP addressing

Disabling at least the IP Address assignment function of the network's DHCP server, with the IP addresses of the various network devices then set by hand, will also make it more difficult for a casual or unsophisticated intruder to log onto the network. This is especially effective if the subnet size is also reduced from a standard default setting to what is absolutely necessary and if permitted but unused IP addresses are blocked by the access point's firewall. In this case, where no unused IP addresses are available, a new user can log on without detection using TCP/IP only if he or she stages a successful Man in the Middle Attack using appropriate software.

1 comment:

Anonymous said...

Lloyd’s is the best possible platform upon which to build our insurance and reinsurance business. It offers many advantages both to ourselves as insurers and reinsurers – and to the policyholders whose interests we serve. Lloyd Security, Inc is a locally owned, operated and serviced security company based in the Twin Cities.

Home security twin cities